If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-18x+34=0
a = 2; b = -18; c = +34;
Δ = b2-4ac
Δ = -182-4·2·34
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{13}}{2*2}=\frac{18-2\sqrt{13}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{13}}{2*2}=\frac{18+2\sqrt{13}}{4} $
| 2.4x+5x=9x | | 100x-5+10x=100 | | x+20+125=180 | | 17=7n+3 | | 360-(180-((x+28)+(4x-3)))=360-(7x-15) | | y=(3/2)Y-1 | | 4s−(–9)=13 | | 6=s/2 | | 5x+7+x–9x=10 | | 3-2v=1 | | 11=-8t-5 | | x+119+90=180 | | 84-w=214 | | 95=-5a-5 | | -4-2c=0 | | 8–5b–1=52 | | x+51+74=90 | | 3u+8=65 | | –2x+19=x–6 | | 7=-3+5b | | 2x+1=–3x+6 | | A-3a-5=0 | | 2(9x+2)=19x+2 | | 10=-12-11a | | 18z−–8z+–4z−16z=6 | | -22=-2+2h | | 7w+9=40 | | 10y+8=90 | | -81=–4x–5x | | 2(x-4)+3x=5x+2 | | 43+x+112=180 | | -23-d=-24 |